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Cutoff Frequencies of Eccentric Wweguides

H. Y. YEE AND N. F. AUDEH, MEMBER, IEEE

Abstract—This paper discusses the uniform cylindrical wave-

guide formed by placing one conductor inside a conducting tube.

Because of the complexity of the guide% cross section, the numerical

technique of the point-matchmg method is adopted to solve the

boundary-value problem. The formulations iire carried out for the

case when each of the conductors has an arbitrary cross section and

also for the case when one of the conductors has a circular cross

section.

The coaxial waveguide modes, in which the field components

have angular variations, split into odd and even modes when the

center conductor begins to shift axis to form the uniform eccentric

waveguide. However, only even modes in the eccentric guide cor-

respond to the coaxial modes with no angular variations. The de-

pendence of the cutoff frequency on the eccentricity of the guide is

determined numerically for even and odd TE and TM modes.

Experimental results verify the theoretical calculations for TE modes.

1. INTRODUCTION

A

TWO-CONDUCTOR waveguide in which one

conductor encloses the other and each has an

arbitrary cross section presents an interesting

problem for the application of the point-matching tech-

nique. A special case of this guide occurs when each of

the two conductors has a circular cross section; such a

circular eccentric guide has been used as an adjustable

quarter-wave transformer for TENT wave modes of

propagation [1]. The characteristic impedance of this

transmission line decreases as the eccentricity between

the inner and the outer conductors increases. when

operating at relatively high frequencies, however, it

should be realized that high-order modes may be

excited.

Recently, the point-matching technique has been

utilizecl to solve eigenvalue problems in many areas of

engineering science [2 ]– [5 ]. The boundary conditions of

a two-dimensional problem are imposed at a finite num-

ber of points around the periphery. lJnder this assump-

tion, the partial differential equation of the problem can

be reduced to a system of algebraic equations. This

method is convenient especially when a high-speed

digital computer is available. In this paper, the cutoff

frequencies of circular eccentric waveguides will be

calculated by the point-matching method for the lowest

and the next higher order TE and TM wave modes, and

the results are plotted for several geometrical configura-

tions.
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It is observed that each of the degenerate wave modes

(with angular-varying field distribution) in the circular

coaxial waveguides are split into two modes wherl the

guide becomes eccentric, namely, the even and the odd

modes. The even mode is assigned to the mode for which

the longitudinal field component is symmetric with

respect to the line of eccentricity,l while the odd mode is

assigned to the mode for which the longitudinal compo-

nent is anti-symmetric with respect to the line of eccen-

tricity. Each of the modes with no angular-varying field

in the coaxial waveguides has only even modes in eccen-

tric waveguides. Cutoff frequencies of both the lclwest

order even and odd TM wave modes are decreasing with

increasing eccentricity. The cutoff frequency of the

lowest order even TE mode is increasing with increasing

eccentricity. There is, however, very little change in

cutoff frequency of the lowest order odd TE mode if the

ratio of the radii of the outer and inner conductors is

equal to three or larger.

The objective of this paper is twofold: 1) to obtain

data of several circular eccentric waveguides of different

geometrical configurations, 2) to show that the eigen-

value problem of this type of two-conductor waveguide,

in which each conductor is arbitrary in cross-sectional

shape, can be solved by the point-matching lmethoc[.

The measured data for two circular eccentric guides

verify the theoretical values.

II. THEORETICAL FORMULATION

Consider a two-conductor waveguide in which one

conductor encloses the other. Let the guide be oriented

such that the z-axis is enclosed by the inner cond actor

and let the cross section of the guide be symmetrical

with respect to the x-axis as shown in Fig. 1(a). Let a

time-harmonic [exp (jut)] electromagnetic wave propa-

gate between the two conductors in the positive z-direct-

ion. The solutions of the scalar Helmholtz equation, for

the even and odd modes may be written in terms of

coaxial wave modes as follows [6]:

.=O

*O= S [~..Jn(~r)+ Bon J?.(h)] sin m9 (2)
.=l

where the subscripts e and o stand for even and odd,

respectively, n is an integer, and r and 0 are the polar

coordinates. J% and Y. are the tith-order Bessel func-

~ The line of eccentricity y is defined as the line joining the c(enters
of the two conductors.
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The point-matching technique requires (5) or (6) to

satisfy tbe boundary conditions at a finite number of

points, namely, 2N points. Let the points (71, L%),

(r,, 02), ‘ “ . (rN, ON) be a set of chosen points around the

outer cross-sectional contour, and (?’N+l, 6N+1), (727+2,

elv+z) , “ “ . (r2N, &N) be the corresponding set of chosen

points around the inner cross-sectional contour. The

boundary conditions at these points for TM modes

(a)

require

and for TE modes require

(b)

Fig. 1. (a) The geometry of the two-conductor waveguide under
consideration. (b) The angle a at the chosen points.

tions of the first and second kinds, respectively. The

quantities A. and B. are constants to be determined by

the boundary conditions. The cutoff wave number k is

given by

k2 = u2Poeo – kz2

where PO and G are the constitutive parameters of free

space, o is the operating angular frequency, and

k.= 27r/& is the propagation constant. The wave func-

tion ~ = Hz for TE wave modes, and JJ = E. for TM wave

modes. The wave function IJ must satisfy either Dirich-

Iet or Neumann boundary conditions. With the known

longitudinal field components H, or E, the transverse

field components can be computed by

~, = (jk,/k2) [– V,E, + (w~o/k,)2 X (V,HJ ] (3)

E, = (–jkz/k2) [(we./k.)Z X (V,EZ) + v,H.] (4)

where z is the unit vector in the z-direction and Vt is the

transverse gradient operator. The cutoff wave number k

and the expansion coefficients A n and B. for each wave

mode are found by requiring that the wave function +

satisfies the boundary conditions. Thus, by means of

(l)-(4) the field inside the waveguide is completely

described, and the power transfer, the attenuation con-

stant due to the finite conductivity of the walls, and

other information about the guide can be determined by

numerical techniques.

Assuming that the series in (1) and (2) converge

rapidly and uniformly for the cases under consideration,

the wave functions may be approximated by a finite

number of terms, i.e.,

Cos
+i . V~ ~ [An.Tn(krm) + B. rn(k~m)] Mm= O (8)

n sin

where %=1, 2, 3, . “ “ , 2iV, and e is the unit vector

normal to the surface. The limits of the summations are

the same as those of (5) and (6). The constants An and

B. with neither one of the subscripts (e, o) implies either

even or odd. Also, the upper and lower functions in (7)

and (8) will always designate the even and odd wave

modes, respectively. In a more precise form, (8) may be

written as

sin
T tan am [AJ~ (krJ + B. Y~(krJ ] nom} = o (8a)

Cos

where cos an=fi”?~ for m=l, 2, . . . . N; cos cum

=—fi. ?~for m= N+l, N+2, . . . , 2N; and ~~is the

unit vector in the r-direction at point (r~, (?J as shown

in Fig. 1(b). The above formulations insure the wave

functions satisfying the boundary conditions simultane-

ously at the chosen points on the outer and the inner

cross-sectional contours. Each of (7) and (8a) forms a

system of 2N homogeneous algebraic equations of 2N

expansion coefficients An and B% with the cutoff wave

number k as the parameter. To obtain nontrivial solu-

tions of Am and Bn, the determinant of these coefficients

must be zero. That is,

D(k) = det I dii \ = O (9]

where

Cos
dij = Ji(kr,) iej

sin
(9a)

Cos
(&. = ~;_N(h’j) (i – N)(+ (9b)

sin



1966 YEE AND AUDEH: ECCENTRIC WAVEGUiDES 489

for TM modes; and

Cos
(i;j = kri (i – N)Oj Yivv’(kyj)

sin

sin
T (i – IV) tan a; ~o~ (i – A~)(3, Yi-N(k~i) (9d)

for TE modes; where for (9a) and (9c)

{

0,1, 2,. ... A1 --1
~=

1,2, 3,. ... IV

and for (9b) and (9d)

{

lV, lV+l, ..,2 A7–1
i=

lV+l, N+2, ..,2N

and

j=l,2, . . ..2lV.

Equation (9) will be referred to as the point-matching

characteristic equation. The roots of (9) are the values

of k which are infinite in number, each of which corre-

sponds to a wave mode. Having determined the cutoff

wave number for a specific mode, the expansion coeffi-

cients A.n and .Bn can readily be found from (7) and (8a).

It should be noted that the chosen points around the

inner cross-sectional contour (inner points) depend on

the outer points and vice versa. The dependence is that,

for a polar coordinate 19~ of an outer point, there is an

inner point which has the same polar coordinate. That

is, t?~=ON+~ where m = 1, 2, . . . , N. Under this condi-

tion, (9) yields exact solutions when applied to the

circular coaxial guide.

III. ONE CONDUCTOR WITH (CIRCULAR

CROSS SECTION

If one of the cross-sectional contours is circular, not

only is the previous analysis applicable, but (9) can also

be reduced from a determinant of orcler 2N to a deter-

minant of order N, with the same accuracy or better.

Due to the limited capacity of a digital computer, the

evaluation of the smaller determinant is easier and more

economical.

Let tlhe z-axis be collinear with the axis of the circular

conducting tube of radius a. The boundary conditions

can be satisfied exactly at the boundary of r = a by set-

ting E,= O and E.= O for TM and TE modes, respec-

tively. The boundary conditions on the other conductor

with general cross section, where ~ depends on 0. are

imposed point-wise.

Considering the TM modes first, the wave functions

(5) and (6) are still valid for this waveguide. The bound-

ary conditions at r = a require that

B. = – AflJn(ka)/ Fn(ka). (lo)

Substituting (10) into (5) and (6), and matching the

boundary conditions at a finite number of lpoints only

at the general cross-sectional contour yields

“(::’’’myn(ka)}Ai’11)
where (rl, 6J, (rz, &), o . . , (~~, 6.v) are N points prop-

erly chosen around the general contour. The limits of the

summation are between O and (N— 1) for the even

modes and between 1 and N for the odd mod(es.

Since the factor 1/ Yn(ka) is the same for every col-

umn of the matrix inside the braces of (1 1), tlhe determi-

nant of this matrix being equal to zero is equivalent to

setting

D(k) = det I d~n I = O (12)

where

dmn = [Jn(k~m) Yn(ka) – Jn(ka) Yn(krm) ] Cos YLOm
sin

and

1/ Yn(ka) = O. (13)

Observe that the order of the determinant of the

point-matching characteristic equation is N. Evidently,

it is easier to evaluate (12) than the equations in (9).

The root of (13) is

TEM mode.

For the TE wave

to (10) is given by

B. =

k = O which is the solution of the

modes, the equation corresponding

– AnJn’(ka)/ Yn’(ka). (14)

Substituting (14) into (5) and (6) and again using the

point-matching method on the general cross-sectional

contour yields

where m=l,2,3, - . . ,N.

The limits of the summation are the same as for TM

modes. Equation (15) is similar in form to (111), and by

the same reasoning, the matrix inside the braces of (15)

leads to the form of (12) with
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– J/(ka) Yn(h’m)] “nf’zem
Cos

and

1/ Yn’(k(z) = o.

Again k = O is the solution for the TEM mode.

With the cutoff wave number determined, the expan-

sion coefficients An and B. can be computed by (10),

(11), (14), and (15). It is easy to see that (11) and (15)

are reducible to exact solutions when applied to circular

coaxial waveguides.

IV. COMPARISON OF EXPERIMENTAL

AND THEORETICAL RESULTS

To verify the correctness of the previous formulations,

two circular eccentric waveguides were investigated

experimentally. One of the eccentric waveguides (see

Fig. 2), under consideration is made of two circular copper

tubes with radii a = 0.4’75 cm and b = 1 cm, and the dis-

tance between the two axes L = 0.315 cm. (Let this be

designated as number 1 waveguide.) The dimensions of

the other waveguide (number 2) are a = 0.15875 cm,

b = 1 cm, and L =0.379 cm. The cutoff frequencies are

measured by the resonant-frequency method [7], by

which the guide is shorted on both ends, thus forming a

resonant cavity. The waveguide cavities of these two

examples are 15.48 cm in length. The energy was fed

through a rectangular slit.

From the field distributions (see Fig. 3), if the slit is

placed radially outward at the largest dimension of the

guide as shown in Fig. 4(a), the energy fed into the guide

induces the odd TE1l (denoted by OTEJ. If the slit is

displaced by an angle of 90° from the position of the

guide’s largest dimension as in Fig. 4(b), the even TE1l

(ETEJ is induced. The normalized cutoff wave num-

bers ka, are tabulated in Tables I and II for the No. 1

and the No. 2 guides, respectively. The measured data

show in most cases better than two-place accuracy. The

error is partly due to the physical construction of the ec-

centric guides; otherwise, the accuracy is expected to be

better. This can be seen when L = O (coaxial guide) in

No. 1, for which the theoretical cutoff frequency is

6.5513 Gc/s while the experimental value is 6.5505 Gc/s.

The two waveguide cavities were also examined at

frequencies from 4 Gc/s up to cutoff (6.546 and 7.237

Gc/s for OTE1l modes for No. 1 and No. 2 guides, re-

spectively), and no resonance was observed.

The theoretical values in Tables I and II are com-

puted by (12) with the z-axis being collinear with the

axis of the waveguide’s inner circular tube. Eleven

points were chosen on the outer cross-sectional contour

and were approximately ever-d y distributed. The calcu-

Fig. 2. The cross section of the eccentric waveguide.

(a)

(b)

Fig. 3. (a) The field configuration of the ETEIl mode.
(b) The field configuration of the OTEI, mode.

(a)

(b)

Fig. 4. (a) The coupling hole for exciting OTEI1 mode.
(b) The coupling hole for exciting ETEIl mode.
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TABLE I

COMPARXSONSOF CUTOFF WAVE NUMBERS
AWOF iVo. 1 WAVEGUIDE

OTEU ETE,I

Measured 0.6512 0.7205
Calculated 0.6526 0.7200

TABLE II

COMPARISONS OF CUTOFF WAVE NUMBERS
kaoF No. 2 WAVEGUIDE

OTEU ETE,l

Measured 0.2779 0.2840
Calculated 0.2791 0.2849

Iated values are believed to have three-place accuracy

since, for example, the values of ka, 0.65263 and 0.65269

of the O’TEU mode for the No. 1 guide are calculated by

eleven points and fifteen points, respectively. More

evidence will be given later concerning the accuracy of

the computation.

V. CUTOFF FREQUENCIE!5 OF

ECCENTRIC WAVEGUIDIZS

As shown in the last sections, the experimental data of

eccentric waveguides substantiate that the point-

matching characteristic equation (12) is applicable for

calculating the cutoff frequencies of ‘TE wave modes.

The validity of (12) for TM wave modes will be demon-

strated in Section VI.

In Figs. 5–10, the normalized cutoff wave numbers ka

of eccentric waveguides are plotted vs. the normalized

eccentricity L/a with the radius ratio b/a considered as

the parameter. For the TE modes, the radius ratios of

1.5, 2.0, 3.0 and 4.0 are shown, while for the TM modes

the ratios of 2.0 and 4.0, only, are shown. The eccen-

tricity varies from the minimum value of zero to the

maximum value.

The behavior of the cutoff frequencies with varying

eccentricity is irregular for all higher-order modes. How-

ever, the cutoff frequency decreases, with increasing

eccentricity for both lowest-order odd and even TM

modes, i.e., the OTM N and the ETM ILO. This phenome-

non is reversed for the ETE1l mode. The eccentricity,

however, has little effect on the cutoff characteristics of

the OTIEII mode except when the two conductors are

almost touching. In this case, the cutoff frequency be-

comes lower than that of the coaxial guide. The pairs

OTE~~ and ETE ~n, and OTMP, and ETMpg of the

eccentric guides are split from the degenerate TE~~ and

TM ~~ modes of the coaxial wave guide with the same

radius ratio, respectively. However, the TE~. and TM~.

modes of the coaxial guides corresponcl only to the even

modes in the eccentric guides.

The plots in Figs. .5-10 are based (on the calculated

values of (12) with three-place accuracy or better. The

cutoff wave numbers of OTEII mode for b/’a = 1.5 are

computed by (12) using 11, 13, 15 and 18 points on the

boundary and the results are shown in Table II 1. Those

for ETEII mode of the same guide computed by 11 and

18 points are shown in Table IV. The chosen points on

the outer contour are approximately evenly distributed.

For TM wave modes, the differences between the

values calculated by 11 and 18 points are greatest in the

fifth place. It is observed that the convergence of the

series solution is more rapid if the ratio of radii b/a and

the eccentricity L/a are smaller.

VI. DISCUSSION

The point-matching technique is a convenient method

for computing the cutoff wave numbers of eccentric

waveguides. The point-matching characteristic equation

(12) was verified experimentally for TE wave modes.

The validity of (12) for TM wave modes can be verified

from the boundary conditions point of view. Substitut-

ing the particular wave number of TM mode under

consideration [calculated by (12) ] into (11), the expan-

sion coefficients A ~ can then be determined algebrai-

cally. Rewriting (11) with r. replacing T* yieldls,

~ [Jn(bc) Yn(ka)
n

– Yn(ka) J?n(krc) ] Cos ti@m[An/ Y.(ka)] = O (16)
sin

where ku and A* are known constants. r., function of 8,

describes the curve where the boundary conclition [i.e.,

~(r., 0)= O] is satisfied, besides at r= a imposed previ-

ously [see (10) ]. It can be seen that the function re given

by (16), represents a single-valued closed contour. From

(5), (6), and (10)-(12) obviously r. passes the chosen

points on the general cross-sectional contour. If the in-

tervals between the chosen points are made sufficiently

small (smaller than the cutoff wavelength), the devia-

tion between the actual cross-sectional contour and that

described by (16) is expected to be small. The cutoff

wave numbers of TM wave modes calculated by (12)

will give as good an accuracy as desired.

From the previous analysis, it is seen that (12) is

obtained by matching the boundary conditions exactly

at the circular cross-sectional contour and approxi-

mately at the general cross-sectional contour. The limi-

tations of using (12) on the general contour are the same

as those discussed in [5]. Numerical computations show

that (12) fails to determine the cutoff frequencies of TE

modes for cross sections with re-entrant corners.

To verify the formulation of Section II, the CLltOff

wave numbers ka of ETEu modes for circular eccentric

waveguides are calculated by (9) and compared with

those obtained by (12) as shown in Table V. The callcu-



492 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES OCTOBER

k<
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Fig. i’. Cutoff wave numbers of eccentric guide
with b/a =3.0 for TE modes.
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Fig. 5. Cutoff wave numbers of eccentric guide
with b/a = 1..5 for TE modes.

,

Fig. 6. Cutoff wave numbers of eccentric guide
with b/a = 2.0 for TE modes.

o

Fig. 8. Cutoff wave numbers of eccentric guide
with b/a = 4 for TE modes.
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Fig. 9. Cutoff wave numbers of eccentric guide
with b/a = 2.0 for TM modes.
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Fig. 10. Cutoff wave numbers of eccentric guide
with b/a = 4 for TM modes.

lations are using the same set of chosen points as dis-

cussed in Section II. Observe that (9) is valid but the

accuracy is not as good as that obtained by using (12)

especially when the eccentricity is large.

In the analysis in Sections II and III are formuIas for

the computation of waveguides with cross sections more

complex than that of the eccentric guides. Cutoff fre-

quencies computed in Sections IV and V serve as an

example of the applications of the point-matching tech-

TABLE 111

COMPARISON OF CUTOFF VJAVE NUMBERS ka OF OTE1l MODE WITH
b/a= 1.5, CALCULATED BY 11, 13, 15, AND 18 POINTS

\

L/a

No. 0.1

of Points

11 0.80415
0.80415

:; 0.80415
18 0.80415

0.2

0.80102
0.80102
0.80102
0.80102

0.3

0.79446
0.79450
0.79450
0.79450

0.4

——.
0.7761(5
0.78068
0.7806’7
0.78069

0.4L5

—.—
—.

0.76631
0.76581
0.76634

TABLE IV

COMPARISON OF CUTOFF WAVE NUMBER ka OF ETEII MODE WITH
b/a = 1..5, CALCULATED BY 11 AND 18 POINTS

—

‘\ L/a

No.
of Points

11
18

0.1 0.2

0.81224 0.83544
0.81224 0.83545

I I

0.3 0.4 0.5

—— —.—

0.88145 0.96824 1.1459
0.88147 0.96906 1.1459

—. -.—

TABLE V

COMPARISON OF ka OF ETEu CALCULATED BY (9) ,4ND (12)
—.——.—

\

L/a
b/a=l.5

II
b,la = 3

\l
— ——. —

Eq. 0.1 0.2 0.3 0.4 0.8
—.—. ——

(9) 0.81222 0.83140 0.86601 0.51833 0.53204
(12) 0.81224 0.83544 0.88145 0.51827 0.53304

nique. With the expansion coefficients found as outlined,

the attenuation constant due to the finite conductivity .
of the conductors maybe estimated [8].
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