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Cutoff Frequencies of Eccentric Waveguides

H. Y. YEE axp N. F. AUDEH, MEMBER, IEEE

Abstract—This paper discusses the uniform cylindrical wave-
guide formed by placing one conductor inside a conducting tube.
Because of the complexity of the guide’s cross section, the numerical
technique of the point-matching method is adopted to solve the
boundary-value problem. The formulations are carried out for the
case when each of the conductors has an arbitrary cross section and
also for the case when one of the conductors has a circular cross
section.

The coaxial waveguide modes, in which the field components
have angular variations, split into odd and even modes when the
center conductor begins to shift axis to form the uniform eccentric
waveguide. However, only even modes in the eccentric guide cor-
respond to the coaxial modes with no angular variations. The de-
pendence of the cutoff frequency on the eccentricity of the guide is
determined numerically for even and odd TE and TM modes.
Experimental results verify the theoretical calculations for TE modes.

I. INTRODUCTION
&_ TWO-CONDUCTOR waveguide in which one

conductor encloses the other and each has an

arbitrary cross section presents an interesting
problem for the application of the point-matching tech-
nique. A special case of this guide occurs when each of
the two conductors has a circular cross section; such a
circular eccentric guide has been used as an adjustable
quarter-wave transformer for TEM wave modes of
propagation [1]. The characteristic impedance of this
transmission line decreases as the eccentricity between
the inner and the outer conductors increases. When
operating at relatively high frequencies, however, it
should be realized that high-order modes may be
excited.

Recently, the point-matching technique has been
utilized to solve eigenvalue problems in many areas of
engineering science [2]-[5]. The boundary conditions of
a two-dimensional problem are imposed at a finite num-
ber of points around the periphery. Under this assump-
tion, the partial differential equation of the problem can
be reduced to a system of algebraic equations. This
method is convenient especially when a high-speed
digital computer is available. In this paper, the cutoff
frequencies of circular eccentric waveguides will be
calculated by the point-matching method for the lowest
and the next higher order TE and TM wave modes, and
the results are plotted for several geometrical configura-
tions,
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It is observed that each of the degenerate wave modes
(with angular-varying field distribution) in the circular
coaxial waveguides are split into two modes when the
guide becomes eccentric, namely, the even and the odd
modes. The even mode is assigned to the mode for which
the longitudinal field component is symmetric with
respect to the line of eccentricity,! while the odd mode is
assigned to the mode for which the longitudinal compo-
nent is anti-symmetric with respect to the line of eccen-
tricity. Each of the modes with no angular-varying field
in the coaxial waveguides has only even modes in eccen-
tric waveguides. Cutoff frequencies of both the lowest
order even and odd TM wave modes are decreasing with
increasing eccentricity. The cutoff frequency of the
lowest order even TE mode is increasing with increasing
eccentricity. There is, however, very little change in
cutoff frequency of the lowest order odd TE mode if the
ratio of the radii of the outer and inner conductors is
equal to three or larger.

The objective of this paper is twofold: 1) to obtain
data of several circular eccentric waveguides of different
geometrical configurations, 2) to show that the eigen-
value problem of this type of two-conductor waveguide,
in which each conductor is arbitrary in cross-sectional
shape, can be solved by the point-matching method.

The measured data for two circular eccentric guides
verify the theoretical values.

II. TaroRETICAL FORMULATION

Consider a two-conductor waveguide in which one
conductor encloses the other. Let the guide be oriented
such that the z-axis is enclosed by the inner conductor
and let the cross section of the guide be symmetrical
with respect to the x-axis as shown in Fig. 1(a). Let a
time-harmonic [exp (jwt) ] electromagnetic wave propa-
gate between the two conductors in the positive z-direc-
tion. The solutions of the scalar Helmholtz equation, for
the even and odd modes may be written in terms of
coaxial wave modes as follows [6]:

¢e = i [Aenjn(kr) + Ben Yn(kr)] cos n (1)

|
Ms

Y, = [AonT w(k?) + Bon Vo (k)| sin nd (2)

n=1
where the subscripts e and o stand for even and odd,
respectively, # is an integer, and 7 and 8 are the polar
coordinates. J, and Y, are the nth-order Bessel func-

1 The line of eccentricity is defined as the line joining the centers
of the two conductors.
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Fig. 1. (a) The geometry of the two-conductor waveguide under

consideration. (b) The angle « at the chosen points.

tions of the first and second kinds, respectively. The
quantities 4, and B, are constants to be determined by
the boundary conditions. The cutoff wave number % is
given by

k? = owluse, — k2

where u, and ¢, are the constitutive parameters of free
space, w is the operating angular frequency, and
k.=2m/\, is the propagation constant. The wave func-
tion ¢ = H, for TE wave modes, and y = E, for TM wave
modes. The wave function ¥ must satisfy either Dirich-
let or Neumann boundary conditions. With the known
longitudinal field components H, or E, the transverse
field components can be computed by

Et = (]kz/kz) [_vth + (“":ufo/kz)z X (VtHz)] (3)
A, = (—jk/F) [(weo/ )2 X (V.E)) + V.H,]  (4)

where Z is the unit vector in the z-direction and V, is the
transverse gradient operator. The cutoff wave number %
and the expansion coefficients 4, and B, for each wave
mode are found by requiring that the wave function ¥
satisfies the boundary conditions. Thus, by means of
(1)-(4) the field inside the waveguide is completely
described, and the power transfer, the attenuation con-
stant due to the finite conductivity of the walls, and
other information about the guide can be determined by
numerical techniques.

Assuming that the series in (1) and (2) converge
rapidly and uniformly for the cases under consideration,
the wave functions may be approximated by a finite
number of terms, i.e.,
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Ve [A o n(kr) + Bon Vo (E7)] cos nd (5)
n=0

[
M=

Yo [AonTn(kr) + Bon Y o(kr)] sin nf. (6)

k(3

!
-

The point-matching technique requires (5) or (6) to
satisfy the boundary conditions at a finite number of
points, namely, 2N points. Let the points (ry, 61),
(75, 62), « - - (rx, Ox) be a set of chosen points around the
outer cross-sectional contour, and (rwy1, Onr1), (Pwie
Ox42), -« (ron, B2n) be the corresponding set of chosen
points around the inner cross-sectional contour. The
boundary conditions at these points for TM modes
require

> [AnTu(brm) + B Valkra)] ?S 10, = 0 Q)

C
n sin
and for TE modes require

cos
7i-Ve 9 [ AT n(kr) + BoVau(kra)] g 8 =0 (8)
7 n
where m=1, 2, 3, - - -, 2N, and % is the unit vector
normal to the surface. The limits of the summations are
the same as those of (5) and (6). The constants 4, and
B, with neither one of the subscripts (e, 0) implies either
even or odd. Also, the upper and lower functions in (7)
and (8) will always designate the even and odd wave
modes, respectively. In a more precise form, (8) may be
written as

[of0}:]
> (kAT (krw) + Bu Vo (kra)] | 16
» sSin

nnom} =0

si
F tan am| AnTn(Brm) + BoVa(krm)]
cos

(8a)
where cos am=# %, for m=1, 2, -, N; cos an
= —f-Fy for m=N-+1, N+2, .-, 2N; and 7, is the
unit vector in the 7-direction at point (#,, 8.) as shown
in Fig. 1(b). The above formulations insure the wave
functions satisfying the boundary conditions simultane-
ously at the chosen points on the outer and the inner
cross-sectional contours. Each of (7) and (8a) forms a
system of 2NN homogeneous algebraic equations of 2V
expansion coefficients 4, and B, with the cutoff wave
number % as the parameter. To obtain nontrivial solu-
tions of 4, and B,, the determinant of these coefficients
must be zero. That is,

D(E) = det |dy| =0 ©
where
COoSs
dl'j = J,(kfj) A 1.0_7' (9&)
sSin
cos
dyg = Yinr) | (G— N)b; (9b)
Sin
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for TM modes; and

cos | _ sin
dij = kr, | 0./ (kr;) F itana;  8,J,(kr;) (9¢)
sin cos
cos .
dig = kry , (i — N)O;Vin'(kr;)
sin

sin
FGE—N)tane; (G — N)O,YVin(kr;)) (9d)
cos

for TE modes; where for (9a) and (9¢)
. 0,1,2,---, N —1
- {1,2,3,‘--,2\7
and for (9b) and (9d)
(N, N+1, -, 2N —1
N {N+1,N+2,---,2N
and

j=1,2,+--,2N.

Equation (9) will be referred to as the point-matching
characteristic equation. The roots of (9) are the values
of & which are infinite in number, each of which corre-
sponds to a wave mode. Having determined the cutoff
wave number for a specific mode, the expansion coeffi-
cients 4, and B, can readily be found from (7) and (8a).

It should be noted that the chosen points around the
inner cross-sectional contour (inner points) depend on
the outer points and vice versa. The dependence is that,
for a polar coordinate 6, of an outer point, there is an
inner point which has the same polar coordinate. That
is, 0m=0x4m where m=1, 2, - - - | N. Under this condi-
tion, (9) yields exact solutions when applied to the
circular coaxial guide.

III. OnE Conbpuctor WitH CIRCULAR
CROSS SECTION

If one of the cross-sectional contours is circular, not
only is the previous analysis applicable, but (9) can also
be reduced from a determinant of order 2N to a deter-
minant of order N, with the same accuracy or better.
Due to the limited capacity of a digital computer, the
evaluation of the smaller determinant is easier and more
economical.

Let the z-axis be collinear with the axis of the circular
conducting tube of radius a¢. The boundary conditions
can be satisfied exactly at the boundary of »=a by set-
ting E,=0 and E;=0 for TM and TE modes, respec-
tively. The boundary conditions on the other conductor
with general cross section, where » depends on 4. are
imposed point-wise.

Considering the TM modes first, the wave functions
(5) and (6) are still valid for this waveguide. The bound-
ary conditions at r=a require that
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B, = — A, J.(ka)/ YV.(ka). (10)
Substituting (10) into (5) and (6), and matching the
boundary conditions at a finite number of points only

at the general cross-sectional contour yields

> {[J,,(/er,,,) Vi(ka) — J.(ka) Y (kr) |

" .<;Onsﬂgm> / Yn(ka)} 4,=0 (11)

where (71, 61), (rs, 62), - - -, (rx, Ox) are N points prop-
erly chosen around the general contour. The limits of the
summation are between 0 and (N—1) for the even
modes and between 1 and N for the odd modes.

Since the factor 1/Y,(ka) is the same for every col-
umn of the matrix inside the braces of (11), the determi-
nant of this matrix being equal to zero is equivalent to
setting

D(k) = det | dm| =0 (12)
where
A = [Tu(lrn) Vo(ka) — To(ka) Vo(kry)] (: 10
and
1/ V. (ka) = 0. (13)

Observe that the order of the determinant of the
point-matching characteristic equation is N. Evidently,
it is easier to evaluate (12) than the equations in (9).
The root of (13) is 2=0 which is the solution of the
TEM mode.

For the TE wave modes, the equation corresponding
to (10) is given by

B, = — A,J./(ka)/ V. (ka). (14)
Substituting (14) into (5) and (6) and again using the
point-matching method on the general cross-sectional
contour yields

) {[J,,' (krw) V' (ka) — 1, (ka) V' (kr) Vo

n

-(Cf)s 110m> / Y./ (ka) T tan anla(bra) V' ()

sSin
— T (k) Vo () I (Sh; no,,,> / Y,/(ka)} 4, =0 (15)
(o{0]

where m=1,2,3, - - -, N.

The limits of the summation are the same as for TM
modes. Equation (15) is similar in form to (11), and by
the same reasoning, the matrix inside the braces of (15)
leads to the form of (12) with
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cos
Amn = [Ta' (brm) V. (Ra) — T (k@) V. (k7) |kt . 10m
sin
Fu tan an[J.(krm) V' (ka)
sin
— T (kQ) Vo(brn)|  16m
cos

and
1/V,!(ka) = 0.

Again k=0 is the solution for the TEM mode.

With the cutoff wave number determined, the expan-
sion coefficients 4, and B, can be computed by (10),
(11), (14), and (15). It is easy to see that (11) and (15)
are reducible to exact solutions when applied to circular
coaxial waveguides.

IV. COMPARISON OF EXPERIMENTAL
AND THEORETICAL RESULTS

To verify the correctness of the previous formulations,
two circular eccentric waveguides were investigated
experimentally. One of the eccentric waveguides (see
Fig. 2), under consideration is made of two circular copper
tubes with radii ¢ =0.475 cm and b=1 cm, and the dis-
tance between the two axes L =0.315 cm. (Let this be
designated as number 1 waveguide.) The dimensions of
the other waveguide (number 2) are ¢=0.15875 cm,
b=1 cm, and L=0.379 cm. The cutoff frequencies are
measured by the resonant-frequency method [7], by
which the guide is shorted on both ends, thus forming a
resonant cavity. The waveguide cavities of these two
examples are 15.48 cm in length. The energy was fed
through a rectangular slit.

From the field distributions (see Fig. 3), if the slit is
placed radially outward at the largest dimension of the
guide as shown in Fig. 4(a), the energy fed into the guide
induces the odd TE;; (denoted by OTEy,). If the slit is
displaced by an angle of 90° from the position of the
guide's largest dimension as in Fig. 4(b), the even TEy
(ETEqy) is induced. The normalized cutoff wave num-
bers ka, are tabulated in Tables I and II for the No. 1
and the No. 2 guides, respectively. The measured data
show in most cases better than two-place accuracy. The
error is partly due to the physical construction of the ec-
centric guides; otherwise, the accuracy is expected to be
better. This can be seen when L=0 (coaxial guide)in
No. 1, for which the theoretical cutoff frequency is
6.5513 Ge /s while the experimental value is 6.5505 Gc/s.

The two waveguide cavities were also examined at
frequencies from 4 Ge/s up to cutoff (6.546 and 7.237
Gce/s for OTEy; modes for No. 1 and No. 2 guides, re-
spectively), and no resonance was observed.

The theoretical values in Tables I and II are com-
puted by (12) with the z-axis being collinear with the
axis of the waveguide's inner circular tube. Eleven
points were chosen on the outer cross-sectional contour
and were approximately evenly distributed. The calcu-

@

Fig. 2, The cross section of the eccentric waveguide.

Fig. 3. (a) The field configuration of the ETE;; mode.
(b) The field configuration of the OTE;; mode.

(b)

Fig. 4. (a) The coupling hole for exciting OTE;; mode.
(b) The coupling hole for exciting ETE;; mode.
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TABLE 1

CoMPARISONS OF CUTOFF WAVE NUMBERS
ka OF No. 1 WAVEGUIDE

OTEqn ETEn
Measured 0.6512 0.7205
Calculated 0.6526 0.7200
TABLE I1

CompARISONS OF CUuTOFF WAVE NUMBERS
ka OF No. 2 WAVEGUIDE

OTEu ETEn
Measured 0.2779 0.2840
Calculated 0.2791 0.2849

lated values are believed to have three-place accuracy
since, for example, the values of ka, 0.65263 and 0.65269
of the OTE; mode for the No. 1 guide are calculated by
eleven points and fifteen points, respectively. More
evidence will be given later concerning the accuracy of
the computation.

V. CUTOFF FREQUENCIES OF
EccENTRIC WAVEGUIDES

As shown in the last sections, the experimental data of
eccentric waveguides substantiate that the point-
matching characteristic equation (12) is applicable for
calculating the cutoff frequencies of TE wave modes.
The validity of (12) for TM wave modes will be demon-
strated in Section VI.

In Figs. 5-10, the normalized cutoff wave numbers ka
of eccentric waveguides are plotted vs. the normalized
eccentricity L/a with the radius ratio b/a considered as
the parameter. For the TE modes, the radius ratios of
1.5, 2.0, 3.0 and 4.0 are shown, while for the TM modes
the ratios of 2.0 and 4.0, only, are shown. The eccen-
tricity varies from the minimum value of zero to the
maximum value.

The behavior of the cutoff frequencies with varying
eccentricity is irregular for all higher-order modes. How-
ever, the cutoff frequency decreases with increasing
eccentricity for both lowest-order odd and even TM
modes, i.e., the OTMy; and the ETM,,. This phenome-
non is reversed for the ETE;; mode. The eccentricity,
however, has little effect on the cutoff characteristics of
the OTE;; mode except when the two conductors are
almost touching. In this case, the cutoff frequency be-
comes lower than that of the coaxial guide. The pairs
OTE.. and ETE,.., and OTM,, and ETM,, of the
eccentric guides are split from the degenerate TE,., and
TM,, modes of the coaxial wave guide with the same
radius ratio, respectively. However, the TEu., and TM .,
modes of the coaxial guides correspond only to the even
modes in the eccentric guides.

The plots in Figs. 5-10 are based on the calculated
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values of (12) with three-place accuracy or better. The
cutoff wave numbers of OTE;; mode for b/a=1.5 are
computed by (12) using 11, 13, 15 and 18 points on the
boundary and the results are shown in Table II1. Those
for ETE;; mode of the same guide computed by 11 and
18 points are shown in Table IV. The chosen points on
the outer contour are approximately evenly distributed.

For TM wave modes, the differences between the
values calculated by 11 and 18 points are greatest in the
fifth place. It is observed that the convergence of the
series solution is more rapid if the ratio of radii b/e¢ and
the eccentricity L/a are smaller.

VI. DiscussioN

The point-matching technique is a convenient method
for computing the cutoff wave numbers of eccentric
waveguides. The point-matching characteristic equation
(12) was verified experimentally for TE wave modes.
The validity of (12) for TM wave modes can be verified
from the boundary conditions point of view. Substitut-
ing the particular wave number of TM mode under
consideration [calculated by (12)] into (11), the expan-
sion coefficients 4, can then be determined algebrai-
cally. Rewriting (11) with 7, replacing 7., yields,

> [Tullr) Yalka)

cos
— Tu(ka) Vo(kr)| | nBn[A./Va(ka)] = 0 (16)
sin

where ka and A4, are known constants. 7., function of 6,
describes the curve where the boundary condition [i.e.,
Y(r., 0) =0] is satisfied, besides at r=a imposed previ-
ously [see (10) ]. It can be seen that the function 7, given
by (16), represents a single-valued closed contour. From
(5), (6), and (10)-(12) obviously 7. passes the chosen
points on the general cross-sectional contour. If the in-
tervals between the chosen points are made sufficiently
small (smaller than the cutoff wavelength), the devia-
tion between the actual cross-sectional contour and that
described by (16) is expected to be small. The cutoff
wave numbers of TM wave modes calculated by (12)
will give as good an accuracy as desired.

From the previous analysis, it is seen that (12) is
obtained by matching the boundary conditions exactly
at the circular cross-sectional contour and approxi-
mately at the general cross-sectional contour. The limi-
tations of using (12) on the general contour are the same
as those discussed in [5]. Numerical computations show
that (12) fails to determine the cutoff frequencies of TE
modes for cross sections with re-entrant corners.

To verify the formulation of Section II, the cutoff
wave numbers ke of ETE;; modes for circular eccentric
waveguides are calculated by (9) and compared with
those obtained by (12) as shown in Table V. The calcu-
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Fig. 5.
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Cutoff wave numbers of eccentric guide
with b/a=1.5 for TE modes.
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Fig. 6. Cutoff wave numbers of eccentric guide

with b/a=2.0 for TE modes.
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Fig. 7. Cutoff wave numbers of eccentric guide
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Cutoff wave numbers of eccentric guide
with b/a=4 for TE modes.
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T 2.0

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1,0
L/a

Fig. 9. Cutoff wave numbers of eccentric guide
with 8/a=2.0 for TM modes.

-+ 1.5

E TMO]'\‘

T 0.5

2 L ! 1 T 1 L 1 L

3.0 2.4 1.8 1.2 0.6 0 0.6 1.2 1.8 2.4 3,0
t/a

Fig. 10. Cutoff wave numbers of eccentric guide
with b/a=4 for TM modes.

lations are using the same set of chosen points as dis-
cussed in Section II. Observe that (9) is valid but the
accuracy is not as good as that obtained by using (12)
especially when the eccentricity is large.

In the analysis in Sections II and I1I are formulas for
the computation of waveguides with cross sections more
complex than that of the eccentric guides. Cutoff fre-
quencies computed in Sections IV and V serve as an
example of the applications of the point-matching tech-
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ComparisoN oF CutorF WAVE NuMBERS ka oF OTEn MODE wWITH
b/a=1.5, CALCULATED BY 11, 13, 15, AND 18 PoOINTS
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L/a
No. 0.1 0.2 0.3 0.4 0.45
of Points
11 0.80415 | 0.80102 | 0.79446 | 0.77616 —
13 0.80415 | 0.80102 | 0.79450 | 0.78068 | 0.76631
15 0.80415 | 0.80102 | 0.79450 | 0.78067 { 0.76581
18 0.80415 | 0.80102 | 0.79450 | 0.78069 | 0.76634
TABLE IV

CoMmparisoN OF Cutorr WAVE NUMBER ka oF ETE;; MoODE wITH
b/a=1.5, CALCULATED BY 11 AND 18 PoINTs

Lja
No. 0.1 0.2 0.3 0.4 0.5
of Points
11 0.81224 | 0.83544 | 0.88145 | 0.96824 | 1.1459
18 0.81224 | 0.83545 | 0.88147 | 0.96906 | 1.1459
TaBLE V

COMPARISON OF ko oF ETEy CALCULATED BY (9) AND (12)

L/a b/a=1.5 bja=3
Eq. 0.1 0.2 0.3 0.4 0.8
9) 0.81222 | 0.83140 | 0.86601 || 0.51833 | 0.53204
(12) 0.81224 | 0.83544 | 0.88145 || 0.51827 | 0.53304

nique. With the expansion coefficients found as outlined,
the attenuation constant due to the finite conductivity
of the conductors may be estimated [8].
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